Abstract: Matrix factorization is a central paradigm in matrix completion and collaborative filtering. Low-rank factorizations have been extremely successful in reconstructing and generalizing ...
Tensor Extraction of Latent Features (T-ELF). Within T-ELF's arsenal are non-negative matrix and tensor factorization solutions, equipped with automatic model determination (also known as the ...
Collaborative filtering generates recommendations by exploiting user-item similarities based on rating data, which often contains numerous unrated items. To predict scores for unrated items, matrix ...
Abstract: A non-negative matrix factorization (NMF) is effectively applied to analyze data in an unsupervised way. Though non-negative factors are endowed with favorable interpretability, such as part ...
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States ...
One scene reflects the themes — A.I., fake news, transgender lives and Gen X — that make the film a classic. By Alissa Wilkinson Neo, the hero of “The Matrix,” is sure he lives in 1999. He has a green ...
Python PyTorch (GPU) and NumPy (CPU)-based port of Févotte and Dobigeon's robust-NMF algorithm appearing in "Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization." ...